Date: \quad February 20, 2024
Memo No.: Vibration Assessment Report
Project: $\quad 6^{\text {th }}$ Concession Road Residential Development
$6^{\text {th }}$ Concession Road, Windsor Ontario
Project \#: 21-150

Baird AE has performed a ground vibration monitoring to support draft plan of subdivision process for the planned residential development located in Windsor, Ontario. This report addresses traffic vibration effects on the nearest sensitive receptors.

The subject land is approximately 0.84 hectares in size and bounded by 6th Concession Road to the West and existing residential to the North, South and East. The development proposal consists of 27 townhouse dwelling units, a landscape area, stormwater management and roadway. The location of the property is illustrated in Exhibit 1.

Exhibit 1: Development location
The City of Windsor shows concern that the heavy road traffic along $6^{\text {th }}$ Concession Road may cause annoyance to the new owners and damage buildings due to vibration induced by road traffic.

Traffic vibrations are mainly caused by heavy vehicles such as buses and trucks. Based on traffic counts on $6^{\text {th }}$ Concession Road, the morning traffic is approximately 391 veh $/ \mathrm{h}$ with 2% of heavy traffic and evening traffic is approximately $644 \mathrm{veh} / \mathrm{h}$ with 0.6% heavy traffic.

There are no such national standards exist in Canada for vibration, but Ministry of Environment has publication Noise Pollution Control NPC 119 (MOE, 1982) and ISO 2631-2 (ISO, 1985) provide guidelines and regulatory requirement applied in the prediction of vibration effect. Other factor contributing to vibration amplitude includes vehicle speed, soil type and roughness of road.

The traffic vibration are assessed based on peak particle velocity (PPV) in mm/s to address effect on structure of houses. As shown in Sheet 1 - Vibration Information Plan (Appendix A), the back of proposed new units are approximately 29 m and 28 m from roadway. The amplitude of the vibration usually ranges between 0.05 and $25 \mathrm{~mm} / \mathrm{s}$ (0.005 and $2 \mathrm{~m} / \mathrm{s}^{2}$). And MOE cautionary levels are set to $10.0 \mathrm{~mm} / \mathrm{s}$ when routine monitoring is conducted (see NPC 119) and an upper limit of $12.5 \mathrm{~mm} / \mathrm{s}$ when vibration monitoring is conducted. For ground vibration, the threshold of human perception is in the order of 0.15 and 0.2 mm/s

Vibration monitoring was conducted at two sensitive locations are shown in Sheet 1. The measurements were completed on June 6 and June 7, 2023 during the peak traffic hours. The vibration analyser SSEYL Landtek VM3670 was securely placed on top of the concrete surface to measure the ground vibration generated by light and heavy vehicles. Monitoring results are provided in table 1.

Table 1: Monitoring Results

Monitoring Location	Morning (June 7) Day of			PPC	Distance to centerline of $6^{\text {th }}$ Conc	Time of Day
	$8: 55 \mathrm{am}$	$0.05-29$ $\mathrm{~mm} / \mathrm{s}$	15.43 m	$4: 55 \mathrm{pm}$	$0.06-29$ $\mathrm{~mm} / \mathrm{s}$	15.43 m
	$8: 40 \mathrm{am}$	$0.01-23$ $\mathrm{~mm} / \mathrm{s}$	12.85 m	$4: 45 \mathrm{pm}$	$0.01-17$ centerline of $6^{\text {th }}$ Conc	

The results shows that the PPVs at receiver location B are within range of 0.05 and $25 \mathrm{~mm} / \mathrm{s}$. Whereas, maximum vibration level is slightly higher at Receiver B. It can be noted that the Receiver B is closer to road as compared to Receiver A,

The traffic vibration can be characterized by a source-path-receive. Using the interpolation formula, the peak particle velocity measurements at receiver locations at distance will have decreased to maximum of $12 \mathrm{~mm} / \mathrm{s}$. To evaluate the effect of vibration on a building, measurements should be normally be made on building façade and midpoints of the floor.

Table 2: Vibration Results

Receiver Location	Peak Particle Velocity (PPV; mm/s)	Distance to Receptor	Sensitive Receptors
Receiver A	$15.9 / 14.4$	$28.08 \mathrm{~m} / 31.08 \mathrm{~m}$	Building façade/ Mid-Point of Room
Receiver B	$10.2 / 9.3$	$28.98 \mathrm{~m} / 31.82 \mathrm{~m}$	Building façade/Mid-Point of Room

Based on the interpolation results, vibration from road may felt at sensitive receiver location A. The levels are not considered high enough to cause damage to buildings but are likely to complain of home owners. Following statement to be included in the agreement:
"Purchasers/tenants are advised that due to the proximity of the adjacent roadway, vibration from the roadway may be felt."

Further, based on acoustical report prepared by Baird AE dated December 2022, an acoustical fence of 1.8 m high will be installed along the westerly limit of development. This acoustical fence will also help reduce vibration amplitudes.

We conclude that this vibration effect from surrounding roadway will be minimum effects and the development can be carried out safely.

If you have any questions or wish to discuss our findings, please advise us.

Yours truly,

Shurjeel Tunio, P.Eng.
Senior Project Manager
Baird AE

Appendix A

